Sequential Monte Carlo on large binary sampling spaces
نویسندگان
چکیده
A Monte Carlo algorithm is said to be adaptive if it automatically calibrates its current proposal distribution using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for good performance. In this paper, we present such a parametric family for adaptive sampling on high-dimensional binary spaces. A practical motivation for this problem is variable selection in a linear regression context. We want to sample from a Bayesian posterior distribution on the model space using an appropriate version of Sequential Monte Carlo. Raw versions of Sequential Monte Carlo are easily implemented using binary vectors with independent components. For high-dimensional problems, however, these simple proposals do not yield satisfactory results. The key to an efficient adaptive algorithm are binary parametric families which take correlations into account, analogously to the multivariate normal distribution on continuous spaces. We provide a review of models for binary data and make one of them work in the context of Sequential Monte Carlo sampling. Computational studies on real life data with about a hundred covariates suggest that, on difficult instances, our Sequential Monte Carlo approach clearly outperforms standard techniques based on Markov chain exploration.
منابع مشابه
Radial Basis Function Regression Using Trans-dimensional Sequential Monte Carlo
We consider the general problem of sampling from a sequence of distributions that is defined on a union of subspaces. We will illustrate the general approach on the problem of sequential radial basis function (RBF) regression where the number of kernels is variable and unknown. Our approach, which we term Trans-Dimensional Sequential Monte Carlo (TD-SMC), is based on a generalisation of importa...
متن کاملSequential Monte Carlo samplers for Bayesian DSGE models
Bayesian estimation of DSGE models typically uses Markov chain Monte Carlo as importance sampling (IS) algorithms have a difficult time in high-dimensional spaces. I develop improved IS algorithms for DSGE models using recent advances in Monte Carlo methods known as sequential Monte Carlo samplers. Sequential Monte Carlo samplers are a generalization of particle filtering designed for full simu...
متن کاملSequential Monte Carlo for Graphical Models
We propose a new framework for how to use sequential Monte Carlo (SMC) algorithms for inference in probabilistic graphical models (PGM). Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using SMC we are able to approximate the full joint distrib...
متن کاملA Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models
Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...
متن کاملA Sample of Monte Carlo Methods in Robotics and Vision
Approximate inference by sampling from an appropriately constructed posterior has recently seen a dramatic increase in popularity in both the robotics and computer vision community. In this paper, I will describe a number of approaches in which my co-authors and I have used Sequential Monte Carlo methods and Markov chain Monte Carlo sampling to solve a variety of difficult and challenging infer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 23 شماره
صفحات -
تاریخ انتشار 2013